Stainless Steel 316/L

Characteristic

Stainless steel grade 316 is an austenitic grade second only to 304 in commercial importance. 316 stainless steel contains an addition of molybdenum that gives it improved corrosion resistance. This is particularly apparent for pitting and crevice corrosion in chloride environments. 316L, the low carbon version of 316 stainless steel, is immune to grain boundary carbide precipitation (sensitisation). This makes it suited to use in heavy gauge (over about 6mm) welded components.

For elevated temperature applications the high carbon variant, 316H stainless steel and the stabilised grade 316Ti stainless steel should be employed. The austenitic structure of 316 stainless steel gives excellent toughness, even at cryogenic temperatures.

Property data given in this document is typical for flat rolled products covered by ASTM A240/A240M. ASTM, EN or other standards may cover products. It is reasonable to expect specifications in these standards to be similar but not necessarily identical to those given in this datasheet.

Availability
Stainless steel 316 is available in Sheet, Bar, Wire, Rod, Strip, tube, pipe, and Channel.
Stainless steel SUS 316 Sheet
Stainless steel SUS 316 Plate
Stainless steel SUS 316 Rod
Stainless steel SUS 316 Tube
Stainless steel SUS 316 Pipe
Stainless steel SUS 316 Channel

Plat Stainless steel 316 Weight table

Stainless Steel Size Berat (Kg)
Plate 316 16 mm x 5 x 20 1219 Kg
Plate 316 25 mm x 4 x 8 610 Kg
Plate 316 20 mm x 4 x 8 488 Kg
Plate 316 16 mm x 4 x 8 390 Kg
Plate 316 5 mm x 4 x 8 118 Kg
Plate 316 6 mm x 4 x 8 141.6 Kg
Plate 316 8 mm x 4 x 8 188.8 Kg
Plate 316 10 mm x 4 x 8 236 Kg
Plate 316 12mm x 4 x 8 283.2 Kg

Tecnical Data Stainless steel 316 Beyond-steel Indonesia

Chemical Composition (%)
C : 0.05 – 0.08
Si : <= 1.00
Mn : <= 2.00
Ni : 10.00 – 14.00
Cr : 16.00 – 18.00
Mo : 2.00 – 3.00

Mechanical Properties
Tensile Strength : 53 Kgf/MM2
Yield Strength (0.2%) : >= 21 Kgf/MM2
Elongation (%) : >= 40%
Hardness : <= 187 HB

Corrosion Resistance
SUS 316 grade has excellent corrosion resistance when exposed to a range of corrosive environments and media. It is usually regarded as “marine grade” stainless steel but is not resistant to warm sea water. Warm chloride environments can cause pitting and crevice corrosion. Grade 316 is also subject to stress corrosion cracking above around 60°C.

Heat Resistance
SUS316 has good resistance to oxidation in intermittent service to 870°C and in continuous service to 925°C. However, continuous use at 425-860°C is not recommended if corrosion resistance in water is required. In this instance 316L is recommended due to its resistance to carbide precipitation. Where high strength is required at temperatures above 500°C, grade 316H is recommended.

Fabrication
Fabrication of all stainless steels should be done only with tools dedicated to stainless steel materials. Tooling and work surfaces must be thoroughly cleaned before use. These precautions are necessary to avoid cross contamination of stainless steel by easily corroded metals that may discolour the surface of the fabricated product.

Cold Working
Grade 316 is readily brake or roll formed into a variety of parts. It is also suited to stamping, heading and drawing but post work annealing is recommended to relieve internal stresses. Cold working will increase both strength and hardness of 316 stainless steel.

Hot Working
All common hot working processes can be performed on 316 stainless steel. Hot working should be avoided below 927°C. The ideal temperature range for hot working is 1149-1260°C. Post-work annealing is recommended to ensure optimum corrosion resistance.

Heat Treatment
316 stainless steel cannot be hardened by heat treatment. Solution treatment or annealing can be done by rapid cooling after heating to 1010-1120°C.

Machinability
316 stainless steel has good machinability. Machining can be enhanced using the following rules:

  • Cutting edges must be kept sharp. Dull edges cause excess work hardening.
  • Cuts should be light but deep enough to prevent work hardening by riding on the surface of the material.
  • Chip breakers should be employed to assist in ensuring swarf remains clear of the work
  • Low thermal conductivity of austenitic alloys results in heat concentrating at the cutting edges. This means coolants and lubricants are necessary and must be used in large quantities.

Welding
Fusion welding performance for 316 stainless steel is excellent both with and without fillers. Recommended filler rods and electrodes for 316 and 316L are the same as the base metal, 316 and 316L respectively. Heavy welded sections may require post-weld annealing. Oxyacetylene welding has not been found to be successful for joining of 316 stainless steel.

Applications
316 Stainless Steel is now typically used in:

  • Food processing equipment
  • Chemical and petrochemical equipment
  • Laboratory benches & equipment
  • Coastal architectural panelling
  • Coastal balustrading
  • Boat fittings
  • Chemical transportation containers
  • Heat exchangers
  • Mining screens
  • Nuts and bolts
  • Springs
  • Medical implants
This entry was posted in Stainless Steel and tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>